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Chapter 1

Introduction

Intermolecular interactions are the driving force of many systems regardless of their small magnitude
when compared with their intra-molecular counterparts. Their importance is crucial to protein binding
events, solvation phenomena, catalysis applications or the design of new materials among many others.
It is no wonder how these relatively small but still very relevant forces have shaped the chemical and
physical reasoning since the early studies of van der Waals on the behaviour of real gases.

The search for a physically sound description of these interactions has favoured the application and
development of radically different theoretical approaches to the problem, ranging from the force fields
used in classical Molecular Mechanics (MM) to the most accurate approaches developed under the
foundations of quantum mechanics (QM), where the contributions of Perturbation Theory (PT) have
been particularly valuable to the field. Despite the seemingly opposed views on the matter from these
theoretical perspectives, it is only through their conjunction by means of the hybrid Quantum Mech-
anics/Molecular Mechanics (QM/MM) methods that larger, more realistic systems, can be described at
reasonable accuracy.

Since their acceptance and consequent popularisation in the 1990s QM/MM methods have found ex-
tensive use in the simulation of biochemical systems[1], where the combination of quantum chemical
accuracy with the extensive configurational sampling that MM is capable of has been key to their suc-
cess. QM/MM techniques have thus enabled the extension of quantum chemical tools to the study of
more complex systems, resulting in a qualitative leap forward in their application. In the framework of
intermolecular interactions, the Energy Decomposition Analysis (EDA), an analytical tool partitioning
the interaction energy into its electrostatic, polarisation and repulsive components, has seen applica-
tion in the description of biochemical processes hand in hand with QM/MM methods[2].

The deep physical meaning that EDA gives to the interaction energy is very attractive as it can give fur-
ther insight into poorly described mechanisms. Such is the case of the catalytic action of myo-Inositol
Oxygenase (MIOX), where H. Hirao[3] showed through an ONIOM(DFT/MM) EDA approach how the
protein environment and dispersion forces influenced the O, binding to the active centre. Nonetheless,
the application of the EDA scheme to bio-related systems can not only reveal its mechanistic insights,
it has also the potential to contribute to rational drug design given the intimate relationship between
interaction energy and drug functionalisation.

Regarding the environment description, the solvation process plays a crucial role in most chemical and
biochemical systems. Given its importance, there is a long and rich trajectory in the computational
treatment of solvation going from implicit models[4], where the solvent is not described explicitly but
rather in a continuous manner usually by means of a distribution function, to explicit ones. EDA has
a significant background when it comes to the description of solvation. Beginning in 1988, Tomasi
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et al.[5] first attempted to apply the methodology to the condensed phase by introducing counter-
poise corrections[6] to the description of dimeric interactions in solution. The use of implicit solvation
models[4], particularly the Polarisable Continuum Model (PCM) model[7, 8], has been very popular
when performing EDA. The work of Gora et al.[9] showed through an EDA-PCM approach how the
electrostatic interaction is the main driver for the interaction energy in the water and hydrogen flu-
oride dimers. Peifeng Su et al.[10] extended the use of a new EDA-PCM scheme to the study of van
der Waals, ionic, cation-7 or metal-ligand binding through different test calculations with a variety of
solvents. However, despite their success when describing solvation free energies and other thermody-
namic properties [11], there are a number of inherent limitations to implicit solvation models. Most
importantly, their inability to describe partially or completely inhomogeneous systems like ionic liquids
or a solvated ligand in a partially exposed binding pocket[12].

Explicit solvation models treating each solvent molecule individually may overcome these limitations
and, hence, they can be used in those situations that are challenging for their implicit counterparts.
Ideally, the whole system would be treated fully ab-initio by means of Density Functional Theory (DFT),
PT or other wavefunction methods. Nonetheless, a full QM treatment of the solute and the many solvent
molecules surrounding it, as well as the different configurations required to appropriately sample con-
figurational space, results in a prohibitive computational cost.

A natural alternative comes with the use of hybrid QM/MM methods [13, 14]. By treating the solute
quantum-mechanically and the solvent by means of a MM force field, this technique comes as a com-
promise between computational efficiency and accuracy. An obvious complication that may arise from
this approach is the treatment of the solute-solvent interaction, critical when an EDA is kept in mind.
There are a number of components comprising these interactions, namely, permanent electrostatics,
forward (MM — QM) and backward (QM — MM) polarisation, exchange-repulsion and dispersion.
In this sense, several efforts have been made to develop new algorithms improving the description of
permanent electrostatics and forward polarisation[15] as well as that of backward polarisation through
the development of polarisable force fields based on fluctuating charges[16] and Drude oscillators [17]
among others. Recent studies have been devoted to the development of accurate QM/MM partition
schemes, where EDA can asses the performance of such partitions and, in last instance, contribute to
MM force field parametrisation. The work of Head-Gordon et al.[12, 18] has been focused on this issue,
where the evaluation of the AMOEBA[19] water force field and the QM/AMOEBA partition for solute-
solvent interactions has been carried out with an EDA scheme.

In this framework, the work here developed is aimed at decomposing the solute-solvent interaction
energy obtained with a QM/MM partition by means of the EDA. The novelty of the project is found
in the EDA scheme used as it incorporates the external potential induced by the MM region, allowing
its evaluation for each energy component. In this sense, a convergence study of each interaction en-
ergy component with increasing size of the QM region, which includes the solute and several solvent
molecules, is performed to asses its impact on intermolecular interactions. Besides, the effect of the
external MM potential on the convergence trend is also examined. The results derived from this study
might be of interest for the set-up of a QM/MM EDA calculation as the magnitudes computed for the
investigated test models reveal a clear dependency on both QM size and external MM potential.

The test systems consist of the five nucleobases; adenine, cytosine, guanine, thymine and uracil in
water solution as well as two tetrahedric solutes, tetrafluoromethane (CF,) and the ammonium cation
(NHJ). The latter systems representing an insoluble and soluble molecule in liquid water, respectively,
whilst the different functionalities of the nucleobases allow for a discussion of the impact that these
structural differences have in the interaction energy, aside, of course, of their biological importance.







Chapter 2

Methods

The general procedure followed in this work could be summarised in a series of steps beginning by the
configurational sampling of the studied systems, which is carried out by means of a classical Molecular
Dynamics (MD) simulation, whose foundations can be found in Newtonian motion and statistical ther-
modynamics. In a second step, the QM/MM partition is performed in a variety of selected snapshots
from the MD trajectory, where the QM region is computed with DFT. Finally, the EDA, which is strongly
rooted in PT, is carried out on these geometries making use of the electron densities computed in the
previous step. The following sections briefly introduce some of the theoretical bases that sustain the
methods employed in this study.

2.1 Molecular Dynamics

In a MD simulation, the Newtonian equations of motion are numerically solved to generate a dynamic
trajectory of a particular system, obtaining structural, dynamic and thermodynamic information. In
classical MD, electrons are not considered explicitly, instead, only nuclear motion under an average
potential is studied resulting in a drastic reduction of the computational cost in relation to that of QM
methods, at the expense of accuracy. For this reason, MD is a suitable method for the study of large
systems of up to millions of atoms and is used in this work to explore the different conformations that
the solvated system adopts during a certain period of time.

For this reason, MD is an adequate tool to obtain the trajectory of the solvated systems, necessary for
the later treatment of the different geometries with DFT and EDA.

2.1.1 Basic Concepts in Molecular Dynamics

For a system of N particles under a conservative potential, i.e., only dependent on the position of such
particles, the trajectory is obtained by solving the differential equations embodied in Newton’s second
law

Py av;
TR T
where F is the force, m the particle’s mass, x is the x-axis component of particle’s position and V is the
potential acting on particle i.

The interdependence of the nuclear motion makes impossible an analytical solution of eq. 2.1.1. In-
stead, an integrating algorithm using finite difference methods is used to numerically solve the equa-

Fy (2.1.1)
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tions. All of these algorithms assume that the positions and dynamic properties can be approximated
as a Taylor series. In this context, the Verlet algorithm[20] is one of the most widely used method for
integrating the equations of motion in MD. The Verlet algorithm uses positions and accelerations at
time ¢ to calculate the positions at a new times ¢ + ¢t and ¢ — dt, r(¢ + 0t) and r(¢t — dt). Expanding r(¢t)
in a Taylor series up to second order:

r(t+8) = r(t) + v(1)5t + %a(t)dtg 2.1.2)
r(t—8) = r(t) — v(t)5t + %a(t)dtQ (2.1.3)

Summing both equations
r(t 4+ 6) = 2r(t) — r(t — 6t) + a(t)ot> (2.1.4)

Velocities are not present in the Verlet algorithm, they can be estimated as

o(t) = r(t + (515)2;:(15 —0t) 2.1.5)

This method, however, requires to know the position in a next step. The Velocity Verlet algorithm[20]
calculates both the velocity and position at the same time step, not compromising precision:

r(t + 5t) = r(t) + v(£)5t + %a(t)5t2 (2.1.6)
w(t +5t) = v(t) + %[a(t) +alt + 5t)]6t 2.1.7)

The algorithm proceeds in three steps, the first one being the computation of the new positions accord-
ing to eq. 2.1.6, then the accelerations at the new time ¢ + 6t are determined from the forces computed
at the new positions and, finally, the new velocities are obtained according to eq. 2.1.7.

Hence, a classical MD simulation requires the initial position of the particles and the initial velocities,
the latter usually provided by a Maxwell-Boltzmann distribution. With respect to the initial positions,
they can be obtained either from experiment or from a previous simulation, the latter is the case in this
study.

The potential driving the behaviour of the modelled system is typically determined by a MM force field
which, in the case of organic and biological systems, has usually the following general expression

Nyonds Nangles Nained.

Vij = Z ka(r —reg)? + Z k(0 — Ocq)” + Z ke(1 + cos(nw — 7))
- b - (2.1.8)
+ Z de. s Tij (%4 + qiq;
AN Tij demry;

i>j

The first two terms on the right side of the eq. 2.1.8 describe bond stretching and bending as a har-
monic potential with r., and 6., being the bond distance and angle at the equilibrium positions and
k, and k; the force constants. Term three represents the dihedral torsion by means of a Fourier series
where w is the dihedral angle, k. the force constant and n is the number of minima with ~ being its
phase angle. The final term in eq. 2.1.8 describes non-bonding interactions by means of a Lennard-
Jones potential and the Coulomb law.
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From eq. 2.1.8 one can see how crucial it is to have a proper parametrization. For instance, the General
Amber Force Field (GAFF)[21] bases its parametrization on more than 3000 MP2/6-31G* optimisations
and 1260 MP4/6-311G(d,p) single point calculations in order to provide general applicability to the
MD simulation of organic molecules.

Another important concept in MD simulations is the use of Periodic Boundary Conditions (PBC), which
allow for a more accurate estimation of bulk properties from the simulation of finite systems. PBC
alleviate many of the issues associated with finite size as the replication of the system in every direction
implies that each particle interacts now with a periodic image of other particles in the system. To
avoid artefacts, like the computation of a single interaction several times, a cut-off for non-bonded
interactions is usually introduced, imposing a lower limit to the size of the simulation box.

2.1.2 Main Steps in a Molecular Dynamics Simulation

Despite the particular challenges that a specific MD simulation may present, there are at least three
common steps to all of them[22].

Relaxation

The Relaxation step is the first of them all and it consists on the application of standard minimization
algorithms like steepest descendent. The goal of this initial step is to avoid unreasonable displacements
at the beginning of the simulation due to excessive forces at the initial configuration.

Equilibration

The Equilibration step follows. At this point, the simulation is carried out in the frame of a thermody-
namic ensemble so that a significant amount of simulation time is devoted to reaching thermodynamic
equilibrium. For instance, in this work the canonical (NVT) ensemble was used to thermalize the sys-
tem prior to the actual MD simulation which was done in the isothermal-isobaric (NPT) ensemble. The
use of these two ensembles is not casual as the first steps carried out in the NPT ensemble are set to
equilibrate the density of the system after the NVT thermalisation step. To enforce the macroscopic
conditions on our system it becomes necessary to use a thermostat and later a barostat. In the case
of thermostat algorithms, they modify the Newtonian equations of motion acting on the instantaneous
temperature which is computed as

N
K=3 z miv? = gNka (2.1.9)
=1
where K is the overall kinetic energy, N the total number of the particles in the system, k; is the
Boltzmann factor, v; is the norm of the velocity vector of particle i and T the average temperature.
The Langevin thermostat[23] is used in this work and it supplements the microcanonical equations of
motion by including Brownian dynamics, i.e., the effect of viscosity and random collision effects of an
implicit solvent. It follows the general equation:

ma; = F; — vipi + fi (2.1.10)
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where F; is the force acting on particle ¢ due to the interaction potential, p; is the linear momentum, ~;
is the friction coefficient and f; is a random force representing the damping between particles due to
friction. These random numbers are chosen from a Gaussian distribution of variance

o 2myikpT

C = 2.1.11
of = = (2.1.1D)

Thermodynamic properties are typically measured at constant pressure and temperature in the labor-
atory, thus, the coupling of a thermostat and a barostat is necessary to achieve the NPT ensemble that
reproduces experimental conditions. The Berendsen barostat[24] is used in this work. Also known as
the weak-coupling barostat it operates through volume rescaling by coupling the system to a weakly
interacting pressure bath. This bath scales the volume periodically by a scaling factor, which produces
more realistic fluctuations in the pressure as it slowly approaches the targeted value. According to
statistical thermodynamics the pressure is computed as

2 1
P=c K+§anFij (2.1.12)
1>]
where K is the total kinetic energy and F';; the force acting on particle i due to particle j. The
Berendsen thermostat rescales the pressure by adding an extra term to the equations of motion

(dP> _h=P (2.1.13)
dt ) path P

where P, is the reference pressure (the bath pressure) and 7p is a time constant.

According to eq. 2.1.12 a change in pressure can be achieved by scaling interparticle distance (Virial
term), i.e., by scaling the system’s volume. For an isotropic system in a cubic box the box length and
thus particle’s coordinates are scaled according to

wlm

o= <1 - ﬁ(PO - P)> (2.1.14)
P

for a non-cubic cell, eq. 2.1.14 finds its tensor analogue.

Production

In a final step, data is finally collected for analysis, i.e., the computation of expectation values. This
stage is reached once the properties of the system are converged to their averaged values, lacking
any systematic dependence on the simulation time or the system’s initial conditions. A criterion often
used in biomolecular simulations, and employed in this work, to determine the starting point of the
production phase is the analysis of the Root Mean Square Deviation (RMSD) of the simulated molecules
as a function of time.
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2.2 Density Functional Theory

Density Functional Theory (DFT) is one of the most popular methods in computational chemistry today
as it provides a very good ratio between accuracy and computational cost, overcoming the poor treat-
ment of electron correlation characteristic from the Hartree-Fock (HF) method without the high com-
putational cost of most post-HF procedures. In this work, DFT is a central element, as it provides the
electron densities that will be used to carry out the EDA.

DFT revolves around the electron density p(r) as a knowledge of the density is all that is necessary for
a complete determination of all molecular properties. The beginnings of DFT date back to 1965 with
the formulation of the Hohenberg and Kohn theorems[25] which are stated in the following section.

2.2.1 Hohenberg and Kohn Theorems
Theorem 1. The electron density p(r) determines the external potential.

Proof. [26] Reductio ab absurdum. Let there be two external potentials v, () and vy (7) arising from
the same p(7). Thus, there will be two Hamiltonians H; and H, with the same (ground state) density,
but different wave functions ¢, and v». Applying the variational principle:

EY < (Yo|H1lth2) = (Ya| Ha|12) + (2| H1 — Halth2)

] (2.2.1)
=55+ [ p(r)lor(r) ~ va(rldr
where EY and ES are the ground state energies of H; and H, respectively.
Analogously:
By < (¢1|Hal¢r) = (1| Hilypr) + (Y1 Hy — Hylihr)
) (2.2.2)
=57+ [ pr)leatr) ~ oa(rldr
Summing the two inequalities we arrive at a contradiction:
E? + ES < E§ + EY (2.2.3)
Hence the external potential is uniquely determined by p(r). O
We can express the energy as a functional of the density:
Elp] = Vnelp] + Tlp] + Veelp]
(2.2.4)

= /p(r)v(r)dr + T'[p] + Vee[p)

where T'[p] is the kinetic energy, V,,. the nucleus-electron interaction energy and V. [p| the electron-
electron interaction energy.

Theorem 2. The ground state density can be calculated, in principle exactly, using the variational method
involving only the density.
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Proof. [26] Any approximate density 5 determines its own wavefunction . Applying the variational
method to this wavefunction:

GIHID) = [ pryo(r)dr + T17] + Veolp) = Elp) = El (2.2.5)

Applying the minimum condition to the energy constrained by the N representability of the density, i.e,
[ p(r)dr = N, where N is the number of electrons:

SE[p] — puo {/ p(r)dr — N} =0 (2.2.6)
where p is the Lagrange multiplier.
dE|p] /
——6p(r)dr — op(r)dr =0 (2.2.7)
[ Sl =i [ s
0E|p] 6T[p] | Veelp]
— =v(r)+ —+ (2.2.8)
= 5om) = U S0t T
Hence, the value of the Lagrange multiplier is defined at the minimum. O

From a practical point of view Theorem 2 states that having a good functional representation, we can
then minimise it to get best electron density and structure.

2.2.2 Kohn-Sham Equations

The above description provides a method to minimise the energy by changing the corresponding dens-
ity. Unfortunately the kinetic energy functional is unknown. For that reason, Kohn and Sham proposed
the combination of the wavefunctions with the density approach[27]. They considered the single-
determinantal wavefunction of a system of N non-interacting electrons constructed from one-electron
functions, also known as orbitals, ¢;. This way the reference system of non-interacting electrons would
have the same electron density as the real system, and thus the real energy could be derived from it.
For such a system the single-determinantal kinetic energy and the electron density are exactly given by

N

_ ol
Tylp) = Z (01l = 5 V2101) (2.2.9)
N

p(r) =Y _|6i(r))? (2.2.10)

The orbitals obey an equation of the form
[—;V2 + Us(r):| i = €;; (2.2.11)

and the energy of the system is given by

Elp] = Tslp] + / vs(r)p(r)dr (2.2.12)
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Returning to the problem with interacting electrons we can rewrite the energy by grouping all the
unknown terms

Elp] = / o()p(r)dr + Tlp] + Vielp)
- / o(F)p(r)dr + Tulp] + J(o] + (Tlo] — Talp]) + (Veelp] — J1o)) (2.2.13)

- /v(r)p(r)dr + Ts[p] + J[p] + Exclp]

where E,.[p] is the exchange-correlation energy functional and its derivative, the exchange-correlation
potential v ..

Egye = (T'[p] — Ts[p]) + (Veelp] — J1p]) (2.2.14)
5Ea:c
Vge(T) = 500 (2.2.15)

and J|p| is the Coulomb interaction term of the electron-electron interaction energy term (Ve.[p]):

/ —p r1)p(r2)dridry (2.2.16)
712

Functional F,.[p] includes all the energy contributions which are not accounted by the previous terms,
ie.:

1. Electron exchange.
2. Electron correlation.
3. A portion of the kinetic energy needed to correct 7[p] to obtain the true kinetic energy 7'[p].

4. Correction for self-interaction induced by the classical coulomb potential.

The above discussion allows to reformulate the problem in the following way

1 2
57+ [0

These are the Kohn-Sham equations for the Kohn-Sham orbitals ¢;. They are solved in an iterative
manner as the SCF equations, expanding the orbitals in terms of the basis set

,‘d + Vge(r )} ¢i = €pi(r) (2.2.17)

$i =) Cailla (2.2.18)

. 1o p(r’) ’ , _
> " cpi (ngl - FVitu(r)+ e r,|dr + Vpe(r) — €ilmp) =0 (2.2.19)
B
Compared to the SCF procedure, the exchange term has now been replaced by the v,. term. This ap-
proach solves the kinetic energy problem but the development of an exchange-correlation functional
becomes necessary.
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2.2.3 Exchange-correlation Functional

In this work the M062X exchange-correlation energy functional developed by Prof Donald Truhlar
at the Minnesota University [28] was used given its good performance when studying non-covalent
interactions[29] as it proves its extensive testing in various databases.

The MO6 series of functionals are classified as hybrid meta-generalised gradient approximations (hybrid
meta-GGAs) as they include a fraction of exact HF exchange while the rest is derived from the meta-
GGA approximation, where the second derivative of the electron density (Laplacian) is considered. In
this case, this is done through a dependence on the kinetic energy density (7). The M062X functional
takes the form

X X
Exc = — EUF 1— — | ERFT 4 pDFT 2.2.20
XC = 007X +< 100) Xt ( )

where E#F is the non-local HF exact exchange, E2f7 is the local DFT exchange energy and EZF7 is
the local DFT correlation energy. Parameter X is the percentage of exact HF exchange in the functional
and it is optimised along with other parameters contained in the meta-GGA exchange and correlation
functionals.

The local parts of the M06 functionals depend on three variables, namely the spin density (p, ), reduced
spin density gradient (x,) and spin kinetic energy density (7,) where

,= el s (2.2.21)
/3
pPo
1 occ )
=5 > Vi (2.2.22)

7

where );, are the spin orbitals.
A working variable (z,) and two working functionals (y(zs, 2+)), (h(xs, 25)) are also defined with (z,)
dependent on both p, and 7,.

The M06 exchange functional is defined by
BV = 3 [ (62, ¥ ) + S 20 @229

where FZBE is the exchange energy density according to the PBE exchange model and %374 the local
spin density approximation (LSDA) for exchange. f(w,) is the spin kinetic-energy enhancement factor,
a function of the spin kinetic energy density (7,) and the spin density (p, ). In the particular case of the
MO062X functional h(z,, z5) = 0.

The M062X correlation functional treats parallel and opposite spin correlation differently. The opposite
spin-correlation is expressed as

B¢ = / eap  9as(Ta 1) + hap(Tap; zas)ldr (2.2.24)
whereas for parallel spin
Eg’a - /egoEG[gaa(wm xa) + hcra(mm ZU)]DUdT (2.2.25)

10
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9ap(Ta, xg) is a parameterized function of the spin density gradient and z,5 = 22 + :1:% and z,p =
Za + 25. Dy is the self-interaction correction factor and eggc and eUFC are the uniform electron gas
(UEG) correlation densities for both opposite and parallel spin cases. The total M062X correlation

energy is given by

E(J}/IOG _ Egﬁ + B2 + Egﬁ (2.2.26)

2.3 Energy Decomposition Analysis

Intermolecular interactions play a crucial role in many chemical and biochemical processes despite
its weakness when compared to those bonding molecules internally. The concept of intermolecular
interaction appears already in the Born-Oppenheimer approximation as it is assumed that each interact-
ing fragment presents the same geometry both when isolated and associated. The interaction energy
between fragments A and B is defined as the difference between the energy of the dimer (F45) and
the energies of the monomers

Eint = Eap — (Ea + EB) (2.3.1)

Computing the interaction energy as suggested in eq. 2.3.1 is known as the supermolecular approach
and given the incompleteness of the basis set, it is subject to the Basis Set Superposition Error (BSSE)[30].
Such error consists in an artificial improvement of the description of the fragments when they are form-
ing the complex due to the basis set of its interacting partner. Therefore, the energy of fragment A will
be lower in the complex AB than in its own basis. Despite being relatively small in absolute value,
given the small magnitude of intermolecular interactions, the BSSE ends up often being larger than the
interaction energy. The Counterpoise correction[6] is the standard procedure used to correct for the
BSSE by computing all energies in the full basis set.

Moreover, the supermolecular approach does not provide any physical insight into the nature of the
interatomical interactions. For a deeper understanding one must turn to perturbation or variational
methods.

2.3.1 Rayleigh-Schrodinger Perturbation Theory

Rayleigh-Schrodinger perturbation theory (RSPT)[31] is an early formulation of time-independent per-
turbation theory proposed in the first third of the twentieth century. The general idea behind RSPT is
that assuming the Hamiltonian of a system to be of the form

H=H°+ \H' (2.3.2)

where )\ is a small real number, the eigenstates of the Hamiltonial H should not be very different from
those of H°. Knowing the eigenstates of H° we can approximate those of H’.
There are three basic assumptions in RSPT (and an additional one in the case of non-degenerate RSPT):

1. All eigenstates and eigenenergies of H” are known.

HO[y0) = EY [4°) (2.3.3)

11
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2. Perturbation H’ is known, meaning that H' can be written in terms of the complete basis of |10),
i.e., the value of (y)0|H’|¢0 ) it is known for any m and n.

3. Only quantum states with discrete eigenenergies are considered.
4. Non-degenerate perturbation theory: a specific state [)0) is considered. Here it is assumed that
|EY — E? | is much larger than AH' for any other eigenstate [¢0,).
Wavefunctions in RSPT

Since the eigenstates of H° form a complete basis, any quantum state can be written as a linear com-
bination of [49,).

[n) =) am [¢05,) (2.3.4)
The same is true for an eigenstate |¢),,) of H
W;n> = Z am ’¢2¢> (2.3.5)
As )\ is small, |¢,,) is close to [¢)0). Separating terms for [¢),,)
[n) = an [¥0) + D am [0, (2.3.6)
m#n
where a,, ~ 1 and a,, ~ 0 for m # n. Unnormalising eigenstates of H
1
[tn) = — [thn) = [¥) + Z oo lm) = en) 4+ 3 em ¥ (2.3.7)
" m;én m#n

where it is known that ¢,,, ~ 0 for a small A. Since ¢,, is a function of A (¢,,(A)) and A is small, the
Taylor series can be used

em =04 DX+ DIN2 4 (B33 4 (2.3.8)
Defining
k) =" ) [yd) (2.3.9)
m#n
we finally get
[¥n) = [00) + Alibn) + A2 [92) + .. (2.3.10)

Since eigenenergies are also functions of \ they can be expanded by a Taylor series, arriving at an
equivalent expression
E,=E’ + \E} + N?E2 + ... (2.3.11)

The Schrodinger equation can be now re-written by introducing the expansions in eq.2.3.11 and 2.3.9
H ) = E |¢n)
(H® + XH) () + AMtop) + A ) + ) = (B + Ay + A Ep +.)(10n) + M) + X% [¥n) + )
H ) + MH ) + H' ) + N (HO [3) + H' [1h)) + .. = Eq [un) + MEp [0n) + By [vn))+
+ N (Ep [¥n) + By ) + Bp [y) +
(2.3.12)

Thus, in perturbation theory there are two sets of quantities to compute, the energy corrections at each
order EV, E} E2. ... and the wavefunction corrections at each order 9, ¥}, 42 ...

12



CHAPTER 2. METHODS 2.3. ENERGY DECOMPOSITION ANALYSIS

First Order Corrections

HC [ipy) + H' [¢n) = Ep [$n) + By [47) (2.3.13)
The first order energy correction, £}, is obtained by multiplying eq. 2.3.13 by (0]

(W HO [p) + (n| H' [0 = (bn| Ep [1bn) + (V0] Epy [4)

(2.3.14)
(Wnl En1¥n) + (Wl H' 1n) = (nl By [n) + (Un] By [¥n)

Hence,
= (Y| H' |yy) (2.3.15)

Since ¢? is normalised, the so called intermediate normalisation has been enforced, the first order
correction in energy is the expectation value of H’.
To compute the first order correction [¢}) to the wavefunction eq. 2.3.13 is multiplied by (¥?,| where

m#mn

(Ul HO [n) + (| H'[07) = (| By [n) + ($n] B [407) (2.3.16)
Knowing that quantum states are orthogonal
B, (U lon) + (0| H' [40) = By (1) (2.3.17)
So o -
(W) = w (2.3.18)
where
) = 3 D) = ) = (WO lut) = W (2.3.19)
Therefore "
[Ya) = Y 1¢m) (W H/Ef”> (2.3.20)

m#n

Second Order Energy Correction
HO ) + H' |vn) = By [Ug) + By 1) + E [n) (2.3.21)
Computing the energy correction, E2 by multiplying eq. 2.3.21 by (30|
(Wl HO [7) + (| H' [} = (] By [07) + (] By [ehp) + (Y] Ep 19)
(Wnl HY 1) + (p| H' [n) = (Y| Bp [¥7) + Ey (Wplton) + Ep
The second term in the right hand side of eq.2.3.22 equals to 0, since according to the definition of

|¢,(Lk)> given in eq.2.3.9, |w7(lk)> is orthogonal to |¢2>. Thus,

Hl 0 H' 0 0 H' 0

m#£n m#n

(2.3.22)

(2.3.23)

To sum up, it has been assumed that for a Hamiltonian H = H" + AH' where all eigenstates |)0) of H°
are known as well as the expectation values (0, |H'|¢0,) for any eigenstate [¢2,) and [¢0,) of H°
we can write both the eigenvalues and eigenstates of H as a power series expansion of A

13
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0 ! 1,/,0 0 ! 1,/,0
E,=E)+ AE, + NE} + ... = E) + X0 H' [¢9) + A* ) ol H' V) (6 H [4) + ... (2.3.24)

Z T o,
0 Hl 0
) = [0+ L) + A2 )+ = )+ 4 3 gy Ll ) (23.25)
m#n n m

It is worth noticing that the second order correction always results in a energy decrease with respect to
the ground state energy when compared with the unperturbed term since

0| g7/ 1,0 0 g’ |,,0 0] 77 1,0 \2

m#n m#n

The numerator is non-negative as it is the product of (2| H' |40 ) by its complex conjugate and the
denominator is strictly negative since n is the ground state of the unperturbed Hamiltonian, hence its
energy EU is always lower than the eigenenergy of any other state.

2.3.2 Polarisation Theory

Polarisation theory[32] is the most conceptually simple perturbational approach to intermolecular inter-
actions. It is a standard application of the Rayleigh-Schrodinger perturbation method to the eigenvalue
problem for the electronic Hamiltonian H for the complex AB. It works under the assumption that
at long distance the overlap between the monomer’s wavefunctions can be ignored. As a result, a
set of ny electrons can be associated with fragment A and, consequently, a Hamiltonian H* can be
defined for fragment A in terms of its electrons, likewise for fragment B. The unperturbed Hamiltonian
is thus defined as H? = H4 + H?, whereas the perturbation will consist of the electrostatic interactions
between the nuclei and electrons of A with those of B

. €q€p
V= Z Z yr— (2.3.27)

acAbeB

here ¢, is the charge of particle a, one of the particles of fragment A, and r,;, is the distance between it
and particle b in molecule B.
Alternatively, V' can be expressed in terms of the charge distribution. For fragment A it is defined as:

oA =Y edd(r—a) (2.3.28)

acA

where vector a is the position vector of fragment A, §(r — a) is the Dirac delta function. The definition
for monomer B is analogous. In these terms V' can be reformulated as

eqd(r — a)epd(r’ , // ,
V= //ZZ 47T€0|’I"—’r| d dr 47r60|r—r d dr (2.3.29)

acAbeB

As usual in perturbation theory both the wavefunction and the interaction energy are expressed as a
power series in A

YAB(N) = 90 + ) + 222 + (2.3.30)

14
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Eim(\) = AEWY 4 2E@) 4 (2.3.31)

pol pol

Regarding the unperturbed state 1/1](?2) , it is expressed as a simple product of eigenfunctions of HY,

YAyB. The different energy components of the interaction energy for a closed shell system are found
using RSPT for the ground state of the system, labelled by m = n = 0, thus the unperturbed ground
state would be [y§'P) = [y d).

Electrostatic Interaction

It corresponds to the first order energy correction as this is the expectation value of the perturbation
operator

Ef) = Wi PIVIUe”) = s IVIvgee) (2.3.32)
Expressing V' in terms of eq. 2.3.29 we get
’
pol // 471'60‘7" ! d dr (2333)

where p(7) is the expectation value of g (7).

Induction and Dispersion Interactions

Induction and dispersion interactions correspond to the second-order energy correction. This term is
separated into three terms considering excitations of each fragment at a time as well the simultaneous
excitation of both fragments resulting in:

E}(?og EAd + Eznd + Edzsp (2.3.34)
where
AB A,B A, B AB AB A, B A, B AB
Bly= Y {¥g \Vlwmgg >_<@gzwo VIvg™) B8, =Y (g PV v gg >_<¢§B¢n VIYE®) 5535
m#0 0 m n#£0 0 n
AB A, B AB

L (B Ef) (B4 + EP)

Exchange-repulsion Energy

The Polarisation approximation described above works well at long range distances but fails at short
range. The main reason for this failure is that the polarisation approximation misses the spin repulsion
between fragments that occurs at short distances as a result of the wavefunction overlap. At this point
exchange can no longer be ignored.

The need for antisymmetrisation complicates considerably the perturbational treatment of intermolecu-
lar interactions. By assigning electrons to each individual molecule in order to separate the Hamiltonian
into an unperturbed part H° and a perturbation AV, (H = H" 4+ \V), we obtain that H° and \V are

15
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not symmetric with respect to the permutation (P) of electrons between fragments while the total
Hamiltonian is.

[P,H)#0 [PAV]#0 [P(H'+AV)] =0 = [P,H’] = —[P,A\V]#0 (2.3.37)

Hence, there is a non-zero first order quantity ([P, \V]) equal to a zeroth-order quantity ([P, H°]) which
contradicts a basic assumption in RSPT as we can no longer collect terms in powers of \.
Another problem arises when antisymmetrising the wavefunction to satisfy the Pauli principle:

W) = Al [F) (2.3.38)

where A is the antisymmetriser operator acting on the Hartree product |¢/}) [)Z). A direct consequence
derived form eq.2.3.38 is that the wavefunction |¢/}4F) is antisymmetric with respect to electron per-
mutation between fragments, whereas |¢/21) and [¢2) are only symmetric with respect to permutation
of A and B electrons among themselves. In this situation, simple products are orthogonal whereas the
antisymetrised products are not. Since Hermitian operators have orthogonal eigenstates there can not
be a zeroth-order Hamiltonian with these antisymmetrised products as eigenstates. To overcome the
problems derived from the inclusion of antisymmetrisation, a new version RSPT must be used. In this
sense, Symmetry Adapted Perturbation Theory (SAPT)[33] has become a popular alternative.

SAPT avoids the non-orthogonality of the antisymmetrised product by taking as expansion function the
simple product |¢2) [4)2) without antisymmetrisation. |¢7) [¢)2) are eigenfunctions of H° in which
some electrons are assigned to A and the rest to B. The antisymmetrisation effect is introduced separ-
ately. Denoting by ¥{'” a member of the set of unsymmetrised simple products, with ¥§'? = [1¢') [ )
we find that the first correction to the interaction energy corresponds to the exchange-repulsion energy

Eer = <"4¢(1)4B| Vv |A¢(1)43> (2.3.39)

An illustrative case is given by two hydrogen atoms in their ground (1s) state. If we consider the
overlap of the charge density, the wavefunction of the system becomes

b= |/ 3 la(h2) — a(2)b(0) (2.3.40)

where a is the normalised 1s wavefunction for atom A and equivalently for . Defining the atomic
Hamiltonians of A and B as H“(2) and H?(1), the interatomic interaction operator is given by

pol ot 3.1
TAB Ti12 TAl TB2

where r4p is the inter-nuclear distance, r15 the inter-electron distance, r4; is the distance between

nucleus A and electron 1 (assigned to B) and likewise for rpgo. It can be shown that the first order

energy correction results in the electrostatic term provided by the polarisation approximation as well

as the following extra terms:

% 1 1 1
o=t [<b| = 0) + {a] — Ja) — {a(1)b(2)| — |a(1)p(2)) | +
1 A1 ' B 12 (2.3.42)
T [S(a’m-l-rB’b)—Kab
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where S = (a(1)|b(1)) and K is the exchange integral, i.e., K,, = (a(1)b(2)|1/r12]a(2)b(1)) which is a
negative (attractive) contribution, while the term (a| % + i |b) represents the repulsion arising from
the electron density overlap. The rest of the components can be thought of as corrections to the elec-
trostatic energy. Overall E,, is a positive, thus repulsive contribution and for that reason it is known as
the exchange-repulsion energy.

In short, the antisymmetrisation of the wavefunction modifies the electron density so that a repulsive
force appears on the nuclei. In this example the effects of wavefunction antisymmetrisation have only
been shown for the first energy correction but they also manifest in higher order terms, contributing to
the induction and dispersion components of the interaction energy.

2.3.3 Electron Density based EDA

The energy decomposition scheme presented so far is based on Molecular Orbital theory and it under-
goes serious difficulties with the construction of a supermolecular wavefunction from the fragment’s
wavefunctions. An interesting alternative is the use of a density based EDA, overcoming the difficulties
derived from the complex treatment of the wavefunction[34]. In this framework, the EDA scheme per-
formed in this work[29, 35] is carried out by means of the unperturbed monomer electron densities as
well as the intermolecular deformation densities associated with each energy term.

This approach is possible since, recalling the principles of DFT and Pair-Density Functional Theory
(PDFT), the energy of any molecular or atomic system can be explained in terms of the one and two-
electron densities, the latter expressed as sum of the product of the one-electron densities and the
exchange-correlation density. In the case of two interacting fragments both densities and the nuclear
electrostatic potential and energy can be expressed in terms of their non-interacting values plus their
changes along the interaction. This way we can think of the two electron deformation density, Ap,.(r),
and the one-electron deformation density Ap(r), which is indeed sum of two contributions. On one
side, there is the effect of the Pauli exclusion principle, Ap(7)pqy, Which is the difference between the
electron-density obtained from the antisymmetrised wavefunction and the electron-density obtained
as a Hartree product. On the other hand, there is the electron polarisation due to the intermolecular
interaction Ap(r)p,;, given by the difference between the total and Pauli deformation densities.
Working with these deformation densities as well as the unperturbed electron densities from the
monomers it is possible to separate the interaction energy in its different components.

Recalling the supermolecular approach, the energy of the AB complex can be expressed in terms of the
one-electron and exchange-correlation densities, p(r) and p,.(r1, r2) respectively, in the following way

1
B——/VQp(r,r’) dr—i—/va Ydr + = // dr dro+
2 r'=r ’7‘2 — 7’1‘
N-1 N (2.3.43)

chT‘177°2
= 2 dryd
// |ro — 71 " TQJFZZ’R R|

i=1 j>i

where the one-electron density matrix p(r, r’) is used instead of the one-electron density for the

calculation of the kinetic energy term and 9y represents the nuclei potential operator.
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Operators and electron densities for the complex energy in eq.2.3.43 can be rewritten in terms of the
non-interacting fragments. The last term in eq.2.3.43 can be rewritten as

Na—1 Ny

YAYA) Zi Z,
2.3.
)PP PN S g S DD DL T Y
=1 75> k=Na+1 1>k 1=1 k=Ng4 +1
For the nuclei potential operator
ON = @NA + @NB (2.3.45)

where N is the total number of nuclei in the complex and N4 the number of nuclei in fragment A, thus
Np = N — Ny4. As for the electron densities

p(r) = p(r) + PP (1) + Ap(r) pot + Ap(r) pa (2.3.46)

pre(r1,72) = pon(r1,79) + pL.(11,79) 4+ pAB (11, 79) + Apre(r1,72) (2.3.47)

where the last to terms in the right side of eq.2.3.46 correspond to the contributions from the Pauli
repulsion and polarisation. Interfragment exchange and polarisation are represented by the last two
terms in eq.2.3.47. Merging the nuclei and electron potentials associated with each non-interacting
fragment, the unperturbed fragment potentials 4 and o5 can be defined

~ ~

0a(r) =on,(7) + pA(T) dr;

o 05(r) = () + pAlr) g, (2.3.48)

r— 7|

In terms of eq.2.3.43 to 2.3.48 the interaction energy of the system can be split in its electrostatic,
exchange, repulsive and polarisation components (E;,; = Eejec + Eezeh + Erep + Epor). Each of them
presented here below:

pa(r1)pp(rs) A L zAZP

E.e :/@ rdr+/v A(r)dr + // =2 dridry + (2.3.49)
lec NApB( ) NBp |7'2—7'1| 2 ;kzj\; |R Rk|
Eopen = / / Pe(TT2) (2.3.50)
|ro — 71
Erep = /VQApPau(T r )) . dr + /ﬁAAppau(r)dr—i-
" (2.3.51)
A au A au
/UBApPau )V + // pPau(T1)App (”’2)d7,1dr2
[ry — 71|

1
Epo = — /VZAppol(T,T/)’ . dr+/®AAppol(r)dr+/@BAppol(r)dr

Appo(r1)App, Appan(r1)Appo
// PPol(T1)Appoi(T2) drydrs // PPau(r1)App Z(T2>dr1dr2+ (2.3.52)
\7“2—7“1| r2 = m

A
// pxc 7‘1,7'2 d 1d7'2
7o — 71
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Since eq.2.3.50 and 2.3.51 both arise from the Pauli exclusion principle they are usually grouped under
the label of exchange-repulsion energy or Pauli energy, Ep,,. Contrary, the polarisation term can be split
in two contributions, namely induction and dispersion, by means of second order PT as discussed in the
above section. To determine the expression of the induction term we start defining the charge-induction

energy, Ecp—ind

Eop_ind = /@AAppol(T‘)d’r‘+/@BAppol(T)dT (2.3.53)

which is indeed the sum of the second and third term on the right side of eq.2.3.52. From RSPT it
is known that the second order energy correction is dependent on the first order correction to the
wavefunction, the density in this case. Such expression is given by

v v
Ap(r) = Dpa(r) + App(r) =2 % m0+22f AP (r pBO (2.3.54)
m##0 B

which can be split into fragments A and B. Substituting eq.2.3.54 in eq.2.3.53 we find that the charge
induction energy is given by

)dr) r)d
Ech—ind 22 vapA T 22 fUAp r)
m7o y e [ O (2.3.55)
49 Z f“BPA = rf;:lp,q r) Ty QZ J oar (TE)OTf;fPB (r)dr
m£0 AT A n£0 B~ 7B

As derived from perturbation theory the first two terms in eq.2.3.55 correspond to the induction energy,
hence rearranging terms

1 [oppR0(r)dr [ 4p70 (r)dr [oapR(r)dr [pp¥ (r)dr
Ein:* Ec in -2 -2
1= |Borina =23 ES — ET 2 EY — EY,
m#0 n#0
(2.3.56)
Finally replacing back the expression of the first order correction for the density (eq.2.3.54) we find

the induction energy to be

1
Eipg = 3 |:Ech—ind — /ﬁAApA(r)dr — /{)BApB(T)dT] (2.3.57)
which recalling the expression for E.;_;,q (€q.2.3.53) we can rewrite as
1
Eing = 3 [/ @AApB(’I“)d’I‘ + /@BApA(T)dT] (2.3.58)

The discussion in this section has exposed how each of the interaction energy terms are computed, bare
in mind that the dispersion term and further higher order corrections are determined as the difference
between the polarisation and induction term, with the second order dispersion contributing the most
to the term.
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Chapter 3

Computational Details

The studied systems consist in a series of solute molecules; the five nucleobases, the ammonium cation
and tetrafluoromehtane, all of them located at the centre of a truncated-octahedron simulation box
fitting a sphere of radius 20 A surrounded by a series of water molecules ranging from 2566 to
3051 depending on the simulated system. Water molecules were added with the TIP3P[36] solvation
model, where each molecule is represented as a rigid monomer and the dimerisation energy between
monomers m and n, F,,, is computed by means of a Coulomb and Lennard-Jones potential (between
oxygens). Each monomer is parametrised as shown in Table 3.1 here below

Table 3.1: TIP3P water parameters. r(OH) is the hydrogen-oxygen distance in A, /H OH is the corres-
ponding angle in degrees, A is the Lennard-Jones “size of the particle parameter” in kecal A2 /mol, C is the
Lennard-Jones size of the particle parameter” in kcal A° /mol and q is the atomic charge

TIP3P water parameters

| r(OH) | LHOH | Ax1073 Ke | 9(0) | q(H)
TIP3P 70.9572 104.52 582.0 '595.0 -0.834 70.417

The geometries of the solutes and their charges were obtained from a previous geometry optimisation
carried out with the Gaussian09 package [37] at the M062X/cc-pVDZ level. An MD simulation of 100ns
was carried out for each simulated system in the NPT ensemble at a constant pressure and temperature
of 1bar and 300K. The Berendsen barostat and the Langevin thermostat were used for this purpose.
The Lennard-Jones potential cut-off was set to 12 A and electrostatic interactions were computed with
the particle-mesh Ewald method[38]. A preceding 0.5ns thermalisation step was carried out in the NVT
ensemble to bring the system to the desired temperature of 300K, itself preceded by a short relaxation
step of 2000 simulation steps. Periodic boundary conditions where imposed in every MD simulation.
All MD simulations where carried out with AMBER18[39], where the GAFF[21] was employed for the
simulation of the solutes.

Single point QM and QM/MM calculations were performed with Gaussian16[40] at the M062X/cc-
pVDZ level on selected geometries of the previously obtained MD trajectory to determine the electron
densities that will be later required to perform the EDA. The AMBER program Cpptraj[41] was em-
ployed for the selection of the geometries along the trajectories.

For the nucleobases, 100 different configurations where picked from the last 50ns of the MD simulation,
each of them equally spaced by a 0.5ns simulation time interval. An in-house python script was then
used to define the QM and MM regions where, out of the total number of water molecules, a sphere
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- MM WATER - - MM WATER -

QM WATER
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QM WATER QM WATER

SOLUTE
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QM WATER
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QM WATER

(a) Complex (b) Fragment 1 (c) Fragment 2

Figure 3.1: Schematic representation of the fragments required for the EDA.

containing the solute at its centre and a total of 100 from the closer water molecules were included in
the QM region, while the remaining solvent was represented as point charges in the MM region.

As for CF, and NH; they where only employed as test systems for the convergence study of the
different energy components with QM size and, thus, it was deemed unnecessary to carry out a con-
figurational sampling for these systems along the MD trajectory. Therefore, instead of a 100 molecular
snapshots, only one was selected from the last 50ns of the MD trajectory. An increasingly larger QM
region was defined on these systems ranging from 10 to 240 QM water molecules for the convergence
study.

All single point calculations were performed defining three different fragments for each geometry of
the MD trajectory: one for the whole system including the point charges of the MM region (complex),
another containing the water molecules of the QM region and the basis functions of the solute as well
as the point charges (fragment 2) and, lastly, the solute with the basis functions of the QM water mo-
lecules (fragment 1). The inclusion of the basis sets was done with ghost atoms, in order to account for
the BSSE. An schematic representation of each considered fragment can be seen in Figure3.1.

Once the electron densities from the fragments defined above were computed, the interaction energy
decomposition was performed with a locally developed Fortran90 code implementing the EDA scheme
presented in Section 2.3.3. Such code computes the deformation densities required for the EDA and it
extends its general treatment of the electron densities to the particular case of a QM/MM calculation.
To do so, the external potential generated by the MM region, Vf #, is added to the nuclear potential of
one of the fragments, according to Figure 3.1 to fragment 2, resulting in

f’z?/x/MM("“) = ONpy (1) + Vig (3.0.1)

Vf s is also included for the calculation of the internuclear potential of the electrostatic energy (eq.
2.3.49).

For the convergence study of the different interaction energy components with increasing QM size, in
addition to the scheme considered above, an alternative one where the MM charges were not con-
sidered was also implemented. This way, a comparison between QM and QM/MM convergence was
obtained. To better asses the convergence of the data, the Cauchy criterion for sequence convergence
was employed. The definition is provided here
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Definition. A sequence (a,,) of real numbers is a Cauchy sequence if for each € > 0 of R, there is a natural
number ng such that

lap, —aq] <€
for any p,q > ng. Any sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Through this criterion a minimum threshold for data convergence can be defined and thus the conver-

gence of the interaction energies can be discussed with this threshold and not uniquely based on the
graphical representation of the data.
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Chapter 4

Results and Discussion

4.1 Convergence Study

As stated in the above section, we start by studying an adequate QM/MM partition for our system. For
this purpose, a convergence study of the different components of the interaction energy is carried out.
The aim of this study is twofold: on one hand, we need to establish an adequate size for the QM region
so that we can compute the different components of the interaction energy for the different snapshots
of the MD trajectory at their converged value. On the other hand, we want to evaluate the impact
of the MM charges on the behaviour of the interaction energy. For this reason the convergence study
compares the trend followed by each energy component within the QM/MM approach with the one
described by a pure QM formulation.

Given the long range character of some interaction energy components, most importantly the electro-
static component, the converge study of the nucleobases with QM region size with was complemented
with additional systems of varying polarity. In particular, CFy and N H,” were considered as they rep-
resent two extreme cases of a hydrophobic and hydrophilic system in a water solution. Moreover, their
highly symmetric (tetrahedral) character prevents trend deviations caused by strong interaction of wa-
ter molecules with a particular region of the solute, as it may be the case for the nucleobases where
certain functional groups favour strong local interactions with the solvent. Both tetrahedral molecules
will undergo the same treatment as the nucleobases, beginning with a 100ns classical MD simulation
and followed by the random selection of a single trajectory snapshot where a progressively larger QM
solvation sphere is defined, ranging from 10 to 240 water molecules. The results of these simulations
are shown in Figure 4.1 below.

By looking at Figure 4.1, we can see how the hydrophobic system C'F; shows a better overall conver-
gence than its hydrophilic counterpart NH, . Comparing Figure 4.1a and 4.1c we can see that the
electrostatic component of the interaction energy is the main driver for the increase in the total in-
teraction energy of N H, with respect to that of C'F}, in accordance with the ionic character of the
former. The fact that the electrostatic component decays with »~"; n = 1, 2, 3 depending on the nature
of the interaction, i.e., is a long range interaction, explains the overall worsen of the convergence trend,
requiring more explicit water molecules. The Pauli repulsion term shows a significant increase in the
hydrophilic system going from a value of 9.86 kcal/mol for C'Fy to 50.87 kcal/mol for N H,” when the
240 water solvation sphere is considered. Given the short range nature of the repulsive interaction, its
increase is synonymous with a shorter distance between solute and solvent.

23



4.1. CONVERGENCE STUDY

CHAPTER 4. RESULTS AND DISCUSSION

Energy(kecal/mal)

Energy(kcal/mal)

2

'
w

-100

-150

-200

Energy(kcal/mol)

-20

e e n = . [ = ]
Ll
7\1 ’
’ S = - —— u
| —=—Total 8
—=&— Dispersion
II Induction -
\ —=— Electrostatic | |
'ﬂ —=— Pauli
= . _ 6
i L e S - - n
|
I 5
_*\
Lo SR - - —= L - - u
50 100 150 200
Number of QM Water Molecules
(a) CF4 QM/MM convergence
51
5 o m— S — — ] ]
P
| 50.5
Lo o ]
;: 50
[]
49.5
L o
[ N
el S S S S S
* * * * 48.5
50 100 150 200
Number of QM Water Molecules
(c) NH; QM/MM convergence
P e LS S e B S S A
P o
|
I." 72
Lo
|
|
_l.\u 70
)
,T-?:;-—:r,f_ S
|
! o
| 68
i
L I.
.\"'-—r "
t : - -
|
|
L \ . . 64
50 100 150 200

Number of QM Water Molecules
(e) Adenine QM/MM convergence

Energy(kcal/mal)

Energy(kcal/mol)

Energy(kcal/moal)

Energy(kecal/mal)

Energy(kcal/mal)

2

'
w

S

-100

-150

-200

Energy(kcal/mol)

0
e
(=}

)
=]

&
S

A
=]

Vi L S
L |
;\l .
| -y . ", L . .
il —
B 3
| £
I ;8
=
| =
L.
H i\-_' .__,__,.-—-—4——% . e 6 W
|
|
L 5
‘\ - . - . —— , — .
50 100 150 200
Number of QM Water Molecules
(b) CF4 QM convergence
T 51
[ B a5 =
=
LS /i EN 5
",lv:,r - L U
C =]
| 50 £
| M
Q
-
k‘ B
| 1;:‘\ 49.5 5'
| - B c
| \——"L__._ ’f_'I_—i-t:_‘l:l—j_i:I: T =
Ll
| 49
"
. . . - 48.5
50 100 150 200
Number of QM Water Molecules
(d) NH} QM convergence
—yg———=—&— ——7 L ] = w74
| Sy
L ‘-"
'\.' 72
L [
s -
LN - 70 =
\I\.\"'—l - -.j_‘.—i_._‘_.— M =_4EH E
| =
| o 9
| 68 g
'\I\i w
: ‘\"-4\.____.&__. 66
| — . — —
.
. . . . 64
50 100 150 200

Number of QM Water Molecules

(f) Adenine QM convergence

Figure 4.1: Convergence of the interaction energy components in kcal/mol with increasing number of QM
water molecules surrounding the C'F; (a and b), NH. I (c and d) and adenine (e and f) solutes. Figures a,
c and e include convergence with point charges surrounding the QM region while b, d and f do not. Total
interaction energy in blue, dispersion in red, induction in yellow, electrostatic in purple and Pauli in green.
The Pauli repulsion term is represented in the scale shown in the right vertical axis.
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As for the induction term, it shows a positive value for the first few points in the case of the ammonium
cation in the presence of MM point charges as it can be seen from Figure 4.1c. These values are clearly
nonphysical since, according to perturbation theory, the second order energy correction from which
the induction component originates must always be negative. Besides, induction is an attractive force
representing the distortion of a molecule’s charge distribution due to the electric field generated by its
neighbours. Taking a look at Figure 4.1d one finds that the induction component is no longer positive
for any QM solvation sphere, for this reason it is reasonable to think that the lack of polarisability of the
TIP3P force field may be responsible for the unexpected induction values in Figure 4.1c. Furthermore,
since the ammonium cation is charged and smaller in size than C'F} it has a larger polarisation effect
on its environment, meaning that the lack of polarisability of TIP3P penalises the induction term to a
greater extent in the case of NH, .

Regarding the values of the induction and dispersion terms, it is worth noting that both molecules are
tetrahedric and thus they have no net dipole moment, which explains the small value of the induction
term in both cases. As for the dispersion component, it is the main contribution to the attractive in-
teraction energy in the case of C'Fy. Nonetheless, its value is notably larger for the ammonium cation,
the reason behind being the smaller interparticle distance as the solute-solvent interaction is greater
for the cationic system.

Comparing now the energy components of each system obtained under the presence of MM point
charges and those obtained only within the QM region, i.e., comparing Figures 4.1a, 4.1c and 4.1e
with Figures 4.1b,4.1d and 4.1f, respectively, we can observe how the convergence trend is not as clear
in the absence of point charges. To aid the discussion, Tables 4.1 and 4.2 present the energy value for
the largest solvation sphere of 240 water molecules, which approaches a radius of 12 A, as well as the
determined threshold for each component for a QM region containing 100 water molecules. To determ-
ine the convergence threshold, the Cauchy criterion for sequence convergence is used, its definition can
be found in Section 3. According to it, for a given natural number ny we can determine the value of a
real number § > 0 satisfying the condition § < € such that our sequence is a Cauchy sequence. To do
so, a particular ny is selected, in our case a,, would be the energy term corresponding to a QM sphere
of a particular size, e.g., the QM sphere of 100 water molecules. To determine the threshold (), the
set of all possible differences for any p, ¢ > ng are computed and the maximum of such set is selected
as threshold, thus satisfying the condition |a, — a4| < 6 < € for all p, ¢ > ng. In the previous example,
elements a, and a, would be the energy terms corresponding to the QM spheres of 100, 120, 140 water
molecules and so on. As one could expect from the trends described in Figure 4.1, the greater the value
of ng, the smaller the threshold .

Table 4.1: Energy convergence thresholds and energy values for the 240 water QM sphere (W240) both in
kcal/mol for all interaction energy components of the C'F, system. Data is presented for the system including
MM point charges (QM/MM) and lacking them (QM).

QM/MM oM
Energy Term Threshold (§) | Energy (W240) Threshold (8) | Energy(W240)
Total 0.0480 -0.6730 0.2310 -0.8500
Electrostatic 0.0640 -3.8940 0.3310 -4.0150
Induction 0.0190 -0.9230 0.0810 -0.8500
Dispersion 0.0100 -5.7140 0.0380 -5.7570
Repulsion 0.0120 9.8580 0.0390 9.7710
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Table 4.2: Energy convergence thresholds and energy values for the 240 water QM sphere (W240) both
in kcal/mol for all interaction energy components of the NH, system. Data is presented for the system
including MM point charges (QM/MM) and lacking them (QM).

QM/MM oM
Energy Term Threshold (§) | Energy (W240) Threshold (§) | Energy(W240)
Total 2.2900 -173.8310 7.6550 -136.2180
Electrostatic 3.0910 -178.0840 6.8470 -140.3360
Induction 1.8200 -5.1630 1.7010 -8.5880
Dispersion 0.3110 -41.5940 0.5910 -38.2430
Repulsion 0.0100 50.8690 0.0570 50.8380

Data in Table 4.1 shows a clear trend in convergence related to each interaction energy component, the
long range components having a worse convergence than the short range Pauli repulsion, which shows
the clearest trend along with the dispersion component for C'Fy. The lack of MM charges polarising the
electron density of the QM region worsens significantly the data convergence for the same size of the
QM water sphere. Once again, the long range interactions are the most affected. As a consequence,
including the polarisation effects of the MM point charges results in a better description of the system,
implying that a smaller QM region can be used to achieve a good degree of data convergence, decreas-
ing computational cost in the most demanding step of the simulation, which is indeed the computation
of the electron density of the fragments.

The same is true for the ammonium cation as shown in Table 4.2. However, unlike C'F;, we do not find
a good agreement between the energy components obtained with and without MM point charges. The
reason for this deviation is found in the required neutrality of the Ewald summation[42] used in the MD
simulation. The Ewald summation computes electrostatic interactions when PBC are used. It speeds up
the summation of the coulombic interactions and ensures the absolute convergence of the series.
These required neutrality implies that a counterion, in this case Cl~, must be included in the system
during the MD simulation. As a result, the geometries used in the convergence study include this ion,
which is treated as a point charge in the MM region when the QM/MM partition is carried out. This
way, when performing the EDA without the point charges the counterion is eliminated resulting in the
energy differences that can be seen in Table 4.2.

Concerning the choice of an adequate size for the EDA of the nucleobases, the same analysis discussed
above is performed for the adenine molecule. To simplify the analysis, the convergence threshold for
the energy components is studied only for the total interaction energy as it is clear from the previously
studied cases that the global term reflects the converge trend described by each individual component.
By taking several points along the trajectory described by the interaction energy we can asses the data
convergence up to such point. Table 4.3 summarises the convergence trend by showing the normalised
convergence thresholds with respect to the total interaction energy for a QM region of 240 water
molecules. This way, the convergence thresholds can be compared with the limit value at a QM sphere
of 240 water molecules.

Table 4.3: Normalised convergence threshold for the total interaction energy with increasing size of the QM
region for the adenine molecule.

| W10 | W20 | W30 | W50 | W100 | W200
Threshold | 0.2071 | 0.1261 | 0.0723 | 0.0478 | 0.0072 | 0.0041
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We can see a rapid increase in data convergence when going from 10 to 50 water molecules in the
QM region, from there on there is a significant stagnation in the convergence rate. For this reason,
100 water molecules is deemed a good approximation to the converged value of the interaction energy
components, as it represents a good compromise between accuracy and computational cost.

Outlining the ideas here exposed, we have seen that the inclusion of MM point charges polarising the
electron density of a system improves the convergence of the interaction energy components, reducing
the requirement for QM solvent molecules and thus saving computational resources. It is also clear that
a significant number of QM water molecules are necessary to appropriately compute the interaction
energies, as much as 100 water molecules were deemed necessary to converge the long range energy
terms to an order of 10~3 when compared to the limit value of the interaction energy at 240 QM waters
for the adenine molecule.

It is also worth noticing that some significant improvements in the description of the system could be
made by including a polarisable forcefield for the solvent. Besides, quantum mechanical treatment of
the counterions would also be desirable given their strong interaction with the solute.

4.2 Nucleobases EDA

As suggested above, the EDA is performed for each of the nucleobases surrounded by a QM region
containing 100 water molecules and the remaining MM point charges. To asses the conformational
freedom of the system, the EDA is carried out on a sample of a hundred MD trajectory snapshots whose
statistical treatment will be performed under the assumption of normality. The energies obtained for
the case of the adenine molecule are presented as a histogram in Figure 4.2. Equivalent representations
can be found in the Annex section for the remaining nucleobases.

To prove that the assumption of normality is reasonable, which is purely based on the relatively large
size of the sample, the Kolmogorov-Smirnov[43, 44] (KS) normality test is performed on each data
sample. This statistic is a null hypothesis non-parametric test that is used to compare if the Empirical
Cumulative Distribution Function (ECDF) for a given set of n samples follows that of a hypothetical
(continuous) CDF, in this case, the one of a normal distribution function. The test statistic is defined as

D = sup |(EFy(z;) — Fo(x:))]

1<i<n

where F, (x) is the ECDF and Fy(x) is the hypothetical CDF. Thus the test accepts the null hypothesis if
the statistic is lesser or equal than a given tabulated value dependent on the hypothetical distribution
at a given significance level. The comparison between the ECDF for the total interaction energy and
the normal CDF can be seen in Figure 4.2f. For all the studied systems the KS test validated the null
hypothesis for the total interaction energy component, confirming the normality of the sampled data at
5% significance. Since the normality assumption has been proven correct, the population statistics can
be expressed within a certain confidence interval as shown in Table 4.4.

As we can see from Table 4.4 the sample mean shows how the repulsive Pauli term is the main con-
tribution to the total interaction energy at 79.95 kcal/mol, while the electrostatic term is the largest
within the attractive components at -64.14 kcal/mol, which can be related to adenine’s ability to form
hydrogen bonds in a polar solvents like water.

Regarding the sample’s Standard Deviation (STD), we can see that is proportional to the sample mean.
If we calculate the Relative Standard Deviation (RSTD) we see that all components fall under the 16%
to 21% range, in particular, RSTDs of 15.9%, 16.9%, 17.1% and 20.6% are found for the dispersion,
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Figure 4.2: Histogram for each interaction energy component with energy in kcal/mol in the horizontal
axis and relative data frequency in the vertical axis with a fitted normal distribution function (red) for the
adenine molecule.(e) ECDF and normal CDF used in the KS test.

Table 4.4: Sample mean (z) and standard deviation (s) in kcal/mol. Population mean (u) and standard
deviation (o) also in kcal/mol for a confidence interval of 95% for each interaction energy component for
the adenine molecule. The percentage contribution of each energy component to the attractive energy
according to the sample mean is shown in the left column.

z I s o
Electrostatic 55.1% | -64.1421 [-66.3149, -61.9692] 10.9508 [9.61484, 12.7212]
Induction  12.9% | -14.9324 [-15.4337, -14.4312] 2.52619 [2.21802, 2.93462]
Dispersion 32.0% | -37.2431 [-38.4158, -36.0705] 5.90984 [5.18888, 6.86532]
Pauli 79.9528 [ 76.6893, 83.2162] 16.4470 [14.4406, 19.1061]
Total -36.3354 [-37.4133, -35.2575] 5.43246 [4.76973, 6.31075]

induction, electrostatic and Pauli components respectively. These high RSTDs point out that even for a
relatively simple system like the one studied here, the configurational sampling provided, in this case,
by a classical MD trajectory, proves to be relevant when using quantum mechanical tools like the EDA.
The highest RSTD is that of the repulsive Pauli component which is a short-range term and as such it is
the most sensitive to small configurational variations when particles are closely interacting.

For comparison among the different nucleobases, the distribution functions for each energy component
as well as the total interaction energies are presented in Figure 4.4. The same pattern concerning
the arrangement of the energy terms is observed in all systems, where the Pauli repulsion and the
electrostatic component contribute the most to the interaction energy and the STDs are proportional
to the mean of the distribution. Also, Table 4.6 aids the discussion by displaying the sample means for
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o0 CL O0LCL O

Figure 4.3: Schematic representation of the five nucleobases. From left to right: adenine, cytosine, guanine,
thymine and uracil.

100 MD snapshots for all nucleobases. A more complete analysis of the remaining nucleobases in the
fashion of Table 4.4 can be seen as an Annex in Table 5.1.
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Figure 4.4: Normal distributions for the sampled components of the interaction energy of each system.
The distributions are normalised with the x axis representing the energy in kcal/mol. The Pauli energy is
represented with opposite sign for comparison with the remaining energy components.

When it comes to the total interaction energy we find that the five nucleobases follow the trend: guan-
ine > cytosine > uracil > adenine ~ thymine. This relative order allows for a limited interpretation
given the structural similarities between the purine and pyrimidine bases, a scheme showing the struc-
ture of the five nucleobases is shown in Figure 4.3. Taking a closer look at the different energy compon-
ents, we can see the effect that this slightly different structural features induce in the interaction energy.
When it comes to the electrostatic energy component guanine and cytosine exhibit the higher values
of -86.59 kcal/mol and -70.63 kcal/mol, respectively, with adenine closely behind at -64.14 kcal/mol.
The fact that both guanine and cytosine have a carbonyl and primary amine group allows the formation
of a significant number of hydrogen bonds both of donor and acceptor nature, possibly explaining the
high value of the electrostatic term in both molecules.
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A remarkable observation is the the high value for the repulsive Pauli interaction energy in adenine,
responsible for the relatively small interaction energy of this molecule in water despite the relatively
high attractive contributions.

Dispersion follows an interesting trend as the purine basis (adenine and guanine) show the higher
values followed by cytosine, thymine and uracil. This order generally agrees with the trend in elec-
tron delocalisation for the nucleobases in vacuum [45, 46]. However, the difference of 5.03 kcal/mol
favouring the dispersion interaction of guanine instead of adenine is in disagreement with the trend
described in the bibliography. The effect of solvation on the electron delocalization of the solute might
be the cause for this deviation.

To further investigate the relation between the dispersion and electron delocalisation, the Delocalisa-
tion Indices (DIs)[47], a quantum chemical tool based on the n-electron density function with great
sensitivity for the description of electron delocalization patterns, are computed for each sample. Table
4.5 compares the 6-centre (Ag) and 5-centre (A5) DIs in vacuum and in water solution for each of the
rings comprising the five nucleobases.

Table 4.5: 6-centre (Ag) and 5-centre (As) delocalization indices in a.u. computed for each of the rings
comprising the five nucleobases; adenine, cytosine, guanine, thymine and uracil. The values of Ag and Aj
are shown for a single geometry in vacuum (the energy minimum), whereas the average for a sample of 100
geometries is shown for the water solution.

Vacuum
Adenine Cytosine Guanine Thymine Uracil
Ag 0.6468 0.2898 0.1949 0.0908 0.1010
As 0.6615 - 0.7867 - -
Water Solution
Ag 0.5709 0.3684 0.1967 0.1518 0.1758
As 0.2854 - 0.7991 - -

From Table 4.5 we can see how solvation affects differently the electron delocalisation in the purine
and pyrimidine bases. A general increase can be observed for the latter, whilst a remarkable decrease
happens to the adenine molecule. As for guanine, no significant variation occurs. For the bicyclic struc-
tures the overall delocalisation is the summation of each indivual ring contribution, yielding a value of
0.9868 for guanine and 0.8563 for adenine. These results are now in perfect agreement with the trend
described by the dispersion energy component of the interaction energy as it is clear from Table 4.6, as
the ordering of the nucleobases according to the DIs now matches that of the dispersion energy.

Table 4.6: Sample mean (Z) in kcal/mol for each interaction energy component for the adenine, cytosine,
guanine, thymine and uracil molecules.

Adenine Cytosine Guanine Thymine Uracil
Electrostatic | -64.1421 -70.6258 -86.5936 -55.6232 -56.7488
Induction -14.9324 -17.612 -20.7593 -14.2076 -14.0889
Dispersion -37.2431 -33.6711 -42.2701 -29.1435 -27.7829
Pauli 79.9528 72.9155 89.3883 61.9451 60.1718
Total -36.3354 -48.9534 -60.186 -36.999 -38.4177
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A final question may arise concerning the number of MD

snapshots that are necessary to achieve a sufficiently precise —w—sample Mean
description of the interaction energies for our population. = Uppor Bouna
So far, we have performed the data analysis for a sample of

100 MD snapshots, from which we can infer the population
parameters . and o with reasonable accuracy. Nonetheless,
and taking into account the high computational cost of per- L
forming the EDA for each snapshot, it would be interesting - P
to estimate the minimal sample from which we can infer rel- ) S

evant population statistics without sacrificing accuracy. For 40

this purpose, the same statistical procedure described previ- 0o s S:rf,p.e o e
ously is now performed for samples of increasing size from
10 to 100 molecular snapshots in increments of 10 elements
for each sample. Thus, the study of the convergence of the a 95% confidence interval for the total in-
sample and population statistical parameters, with a focus (eraction energy (kcal/mol) with increasing
on the sample mean, for the total interaction energy is as- sample size for the adenine molecule.
sessed. The results are shown in Figure 4.5 and a summary

is also given in Table 4.7 below for the adenine molecule. Table 5.2 in the Annex section shows equi-
valent data for the remaining nucleobases.

The theoretical background for this approach can be found in the Central Limit Theorem, which states
that if X, X, ..., X, are n independent random variables, equally distributed, drawn from a population
with overall mean  and finite variance o, then the limiting form of
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is a standard normal distribution, where X is the sample mean. As a consequence, when n — oo then
X — p. This is indeed what is shown both in Table 4.7 and Figure 4.5. Not only does the sample mean
approach a certain value, the length of the interval in which the population mean can be found for
a 95% confidence interval is progressively reduced with increasing n. If we were to choose a smaller
sample than our initial treatment of 100 MD snapshots, then a sample with 30 to 50 geometries would
be an excellent compromise between accuracy and computational cost. As we can see from Table 4.7,
for this range of samples we achieve a stable value for the z and s while the interval for the population
parameters is kept relatively narrow at a 95% confidence interval.

Table 4.7: Sample mean (Z) and standard deviation (s) in kcal/mol. Population mean (x) and standard
deviation (o) also in kcal/mol for a confidence interval of 95% for each interaction energy component for
the adenine molecule with increasing sample size.

Sample size T 1 s o

10 -32.7979 [-37.4959, -28.0999] 6.56738 [4.51727, 11.9895]
20 -34.7799 [-37.6422, -31.9176] 6.11582 [4.65102, 8.93259]
30 -36.4739 [-38.6155, -34.3324] 5.73518 [4.56753, 7.70989]
40 -36.5828 [-38.3591, -34.8065] 5.55407 [4.54968, 7.13163]
50 -36.1735 [-37.7669, -34.5801] 5.60672 [4.68348, 6.98672]
75 -36.2706 [-37.5413, -34.9999] 5.52309 [4.75880, 6.58214]
100 -36.3354 [-37.4133, -35.2575] 5.43246 [4.76973, 6.31075]

31






Chapter 5

Conclusions

In the above pages, the decomposition of the interaction energy components in the framework of
QM/MM has been discussed for a series of solutes in a water solution. Through this approach, the EDA
is extended from the study of simple dimeric systems to larger, more complex, ones where its physical
insight can ease the description of otherwise inaccessible phenomena. The adaptation of the EDA from
a purely QM formulation to a MM environment proves to be an effective approach for the description
of intermolecular interactions in large systems.

The convergence study performed on the test systems CF, and NH] reveals how the data convergence
is not only dependent on the short or long character of the interaction but also on the presence of the
point charges embedded in the MM region. As much as 100 QM water molecules are deemed necessary
for a sufficiently accurate description of the interaction energies for a solute in water solution.
Following the converge study, the EDA is performed for a sample of 100 MD trajectory snapshots, whose
statistical treatment reveals the importance of the configurational sampling when computing interac-
tion energies as a significant STD is found for the obtained data. The discussion of the nucleobases
behaviour in water is aided by the computation of the DIs, this quantum-mechanical tool allows to
target the relation between the electron delocalisation of the nucleobases in a solvated environment
and the dispersion component of the interaction energy.

A general conclusion that could be extracted from this work is the that the use of the EDA benefits from
a QM/MM approach, as the polarisation exerted by the MM environment leads to a better description
of the interaction energy, speeding up its convergence with QM region size and thus reducing the cost
derived from its computation. Nonetheless, the MM force field here employed is not polarisable, which
leads to unreasonable trends for the ammonium cation in water solution. A significant improvement
could be achieved with the use of a polarisable force field and a quantum-mechanical treatment of the
counter ions.

The good performance of the EDA for the nucleobases in water solution proves the validity of this
method and opens the door for application in complex systems, particularly those of biological interest
as the QM/MM-EDA scheme here exposed has the potential to overcome the limitations that some of
the most widely used solvation continuum models still suffer today.
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Figure 5.1: Histogram for each interaction energy component with energy in kcal/mol in the horizontal
axis and relative data frequency in the vertical axis with a fitted normal distribution function (red) for the
cytosine molecule.(e) ECDF and normal CDF used in the KS test.
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Figure 5.2: Histogram for each interaction energy component with energy in kcal/mol in the horizontal
axis and relative data frequency in the vertical axis with a fitted normal distribution function (red) for the

guanine molecule.(e) ECDF and normal CDF used in the KS test.
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Figure 5.3: Histogram for each interaction energy component with energy in kcal/mol in the horizontal
axis and relative data frequency in the vertical axis with a fitted normal distribution function (red) for the
thymine molecule.(e) ECDF and normal CDF used in the KS test.
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Figure 5.4: Histogram for each interaction energy component with energy in kcal/mol in the horizontal axis
and relative data frequency in the vertical axis with a fitted normal distribution function (red) for the uracil

molecule.(e) ECDF and normal CDF used in the KS test.
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Table 5.1: Sample mean (Z) and standard deviation (s) in kcal/mol. Population mean (x) and standard
deviation (o) also in kcal/mol for a confidence interval of 95% for each interaction energy component for
the cytosine, guanine, thymine and uracil molecules. The percentage contribution of each energy component
to the attractive energy according to the sample mean is shown in the left column.

Cytosine
T W S o
Electrostatic 57.0% | -70.6258 [-72.8019, -68.4497] 10.9669 [9.62902, 12.7400]
Induction 14.4% | -17.612 [-18.1741, -17.0499] 2.83294 [2.48734, 3.29096]
Dispersion 28.6% | -33.6711 [-34.7296, -32.6125] 5.33500 [4.68416, 6.19753]
Pauli 72.9155 [ 70.0002, 75.8307] 14.6922 [12.8999, 17.0676]
Total -48.9534 [-50.4712, -47.4357] 7.64915 [6.71601, 8.88583]
Guanine
T n S o
Electrostatic 57.9% | -86.5936 [-88.5481, -84.6392] 9.84992 [8.64830, 11.4424]
Induction 13.9% | -20.7593 [-21.2904, -20.2283] 2.67612 [2.34965, 3.10878]
Dispersion 28.2% | -42.2701 [-43.4010, -41.1393] 5.69912 [5.00387, 6.62053]
Pauli 89.3883 [ 86.4919, 92.2846] 14.5968 [12.8160, 16.9567]
Total -60.186 [-61.4235, -58.9485] 6.23687 [5.47601, 7.24521]
Thymine
x o’ s o
Electrostatic 56.2% | -55.6232 [-57.3219, -53.9244] 8.56119 [7.51678, 9.94532]
Induction  14.4% | -14.2076 [-14.7271, -13.6881] 2.61825 [2.29884, 3.04156]
Dispersion 29.4% | -29.1435 [-30.1223, -28.1646] 4.93307 [4.33127, 5.73063]
Pauli 61.9451 [ 59.3586, 64.5317] 13.0357 [11.4454, 15.1432]
Total -36.999 [-38.0745, -35.9236] 5.41991 [4.75872, 6.29618]
Uracil
T W S o
Electrostatic 57.5% | -56.7488 [-58.6304, -54.8673] 9.48249 [8.32569, 11.0156]
Induction  14.3% | -14.0889 [-14.6415, -13.5362] 2.78517 [2.44540, 3.23547]
Dispersion 28.2% | -27.7829 [-28.7327, -26.8332] 4.78668 [4.20273, 5.56056]
Pauli 60.1718 [ 57.6229, 62.7206] 12.8456 [11.2786, 14.9225]
Total -38.4177 [-39.6793, -37.1561] 6.35821 [5.58255, 7.38618]
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Table 5.2: Sample mean (Z) and standard deviation (s) in kcal/mol. Population mean (i) and standard
deviation (o) also in kcal/mol for a confidence interval of 95% for each interaction energy component for
the cytosine, guanine, thymine and uracil molecules with increasing sample size.

Cytosine
Sample size z i s o
10 -48.3456 [-52.2315, -44.4597] 5.43216 [3.73643, 9.91700]
20 -48.7224 [-51.6069, -45.8379] 6.16330 [4.68713, 9.00194]
30 -48.8443 [-51.5230, -46.1655] 7.17388 [5.71333, 9.64396]
40 -48.6705 [-50.9805, -46.3605] 7.22285 [5.91668, 9.27440]
50 -48.9593 [-50.9358, -46.9829] 6.95460 [5.80942, 8.66636]
75 -48.3283 [-49.9830, -46.6735] 7.19208 [6.19684, 8.57117]
100 -48.9534 [-50.4712, -47.4357] 7.64915 [6.71601, 8.88583]
Guanine
Sample size z 1 s o
10 -60.3503 [-64.2996, -56.4010] 5.52080 [3.79740, 10.0788]
20 -60.9629 [-63.5573, -58.3685] 5.54346 [4.21575, 8.09662]
30 -61.0160 [-62.8485, -59.1836] 4.90742 [3.90830, 6.59712]
40 -60.7887 [-62.5737, -59.0037] 5.58129 [4.57197, 7.16657]
50 -60.8726 [-62.4784, -59.2668] 5.65025 [4.71984, 7.04096]
75 -60.6715 [-62.1328, -59.2102] 6.35118 [5.47230, 7.56902]
100 -60.1860 [-61.4235, -58.9485] 6.23687 [5.47601, 7.24521]
Thymine
Sample size T 1 s o
10 -36.3844 [-41.7678, -31.0010] 7.52550 [5.17631, 13.7386]
20 -37.3375 [-40.3397, -34.3352] 6.41487 [4.87845, 9.36937]
30 -36.9739 [-39.1399, -34.8079] 5.80053 [4.61958, 7.79774]
40 -36.6432 [-38.4877, -34.7986] 5.76764 [4.72463, 7.40586]
50 -36.3869 [-37.9834, -34.7904] 5.61758 [4.69256, 7.00025]
75 -36.5225 [-37.8019, -35.2431] 5.56059 [4.79111, 6.62683]
100 -36.9990 [-38.0745, -35.9236] 5.41991 [4.75872, 6.29618]
Uracil
Sample size T I s o
10 -43.0368 [-48.5325, -37.5411] 7.68249 [5.28429, 14.0252]
20 -39.9470 [-43.7630, -36.1311] 8.15359 [6.20073, 11.9089]
30 -39.5185 [-42.3319, -36.7051] 7.53434 [6.00040, 10.1285]
40 -39.2756 [-41.5166, -37.0346] 7.00724 [5.74006, 8.99755]
50 -39.3768 [-41.2498, -37.5038] 6.59053 [5.50529, 8.21268]
75 -38.5395 [-39.9910, -37.0880] 6.30859 [5.43561, 7.51827]
100 -38.4177 [-39.6793, -37.1561] 6.35821 [5.58255, 7.38618]
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